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A group theoretical calculation of the S matrix for 
the Dirac-Coulomb problem 

Jianshi Wut, A StahlhofentP, L C Biedenharntll and F IachelloSll 
t Department of Physics, Duke University, Durham, NC 27706, USA 
$ Department of Physics, Yale University, New Haven, C T  06520, USA 

Received 29 January 1986, in final form 26 January 1987 

Abstract. Recently developed group theoretic techniques for calculating the S matrix are 
extended to the relativistic scattering regime. The Dirac-Coulomb problem is treated in 
detail. Phase shifts for an approximate Coulomb-Dirac Hamiltonian, which has SO(3, 1) 
symmetry, are obtained for the first time, again using a group theoretical approach. The 
methods developed here may be useful in the construction of algebraic models for proton- 
nucleus scattering. 

1. introduction 

Group theoretical techniques for scattering problems have proved to be useful in 
calculating the scattering matrix of quantum systems [ 1-41, 

The work done so far, however, has been restricted to the non-relativistic 
Schrodinger system, and the question arises as to whether or not a similar method can 
be used in the group theoretical approach to relativistic scattering problems. We shall 
answer this question in this paper. 

We first review the Lie-algebraic techniques and results in solving the non-relativistic 
Coulomb scattering [5,6] and the formalism for the Dirac scattering problem [7]. 
Then, we discuss an approximate Dirac-Coulomb Hamiltonian possessing SO(3, 1) 
symmetry [8]. Finally, we extend the technique to the Dirac-Coulomb scattering 
problem itself. Since the Dirac-Coulomb problem is an example where symmetry 
breaking occurs, the technique developed in calculating Dirac-Coulomb scattering 
may shed light on the generalisation of this technique to the cases where no appropriate 
dynamical symmetry exists. 

2. Non-relativistic Coulomb scattering 

It is well known [ 5 ]  that the non-relativistic Coulomb Hamiltonian 

1 a 
2M r 

H =-#+- 
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possesses two vector invariants: the angular momentum, 

L = r % p  

and the Lenz vector 

1 
2M 

A = - ( p  x L -  L + P )  + a i  (2.3) 

where ;= r / r .  (Note that we have chosen a positive sign for the potential corresponding 
to a repulsive interaction. j 

Since L and A commute with H we can renormalise the Lenz vector by introducing 

K = (M/2H)”’A. (2.4) 

We may then restrict H to a subspace where the Hamiltonian has a definite eigenvalue, 
i.e. 

1 
2M 

H + - k 2  

so that 

K + (MI  k ) A .  ( 2 . 4 ~  j 

It can be shown that L and K generate the SO(3 , l )  symmetry of the non-relativistic 
Coulomb scattering, i.e. they satisfy the following commutation relations 

[ L ~ ,  L ] l = i E ~ ~ k L k  

[ L,,  K,l = i E t j k K k  (2.5) 

[ K I ,  K,1= -iEykLk. 

The SO(3, 1) representation generated by the realisation (2.2), (2.4) is characterised 
by a pair of numbers [9] 

1, = 0 c = ia’ (2.6) 
where a’= a M / k .  They are related to the two SO(3, 1) invariants by 

L * K = iloc = 0 
L* - K~ = p +  c2  - 1 = -1 - a I 2  . 

0 

The SO(3, l  j basis states la’lm) are given by 

( L 2 - K 2 ) I a ’ l m ) =  - ( l+a”)Ia’ fm) 

L’ la ’ fm)=  f ( f + 1 j l a ’ h )  (2.8) 
L,la‘lm) = mla‘ fm) .  

Let us now consider the group theoretic approach to scattering [ l l ] .  The Lie 
algebra describing the symmetry must be obeyed everywhere in R’, with exactly the 
same formal relations. The form of the generators may change (say in regions distant 
from the charge centre), but the algebra per se cannot anywhere. 

Scattering is, however, a matter of asymptotics, with the initial and final states 
measured at infinity. This does not imply that the asymptotic symmetry is Euclidean- 
indeed for the Coulomb field it is well known that the motion never becomes interaction 
free. 
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What does change is the space over which the realisation is constructed. The space 
of scattering states is obtained by deleting the origin and computing the contraction 
limit (as the result of factoring out the radial motion) of all operators. For the problem 
at hand, this yields the 2-sphere at infinity ( S 2 )  augmented by a two-element group 
Z 2 ,  the ‘remnant’ of the in- and out-going waves. Thus the factor space of scattering 
states is S 2 x E 2 ,  with H 2  generated by R (with R 2 =  E ) .  The operator R is the limit 
of the radial operator (ik)-’d/dr. 

The generators L, equation (2.2), and K, equation (2.4), acting on the factor space 
S 2  x Z2, can be explicitly constructed by taking the asymptotic limit for large r. Since 
L acts on S2-and commutes with R-we see that L is unchanged. The remaining 
operator K, in the limit, takes the form: 

K + K ‘ =  +(;x L -  L X  ?)R + a‘;. (2.9) 

It is easily shown that the operators L, K ’  and R (with R 2  = E )  generate the group 

The ket vectors-denoted by the ket {Ia’lm, &)}-in the space of scattering states, 

L .  K’+O (2. loa)  

SO(3, l ) x Z 2 .  

S 2  x Z 2 ,  are labelled by the eigenvalue equations: 

L2 - ( K’)2 + - 1 - ( (Y ’)2 

L2+ i(l+ 1 )  

(2.10b) 

(2.11a) 

L3+ m (2.1 1 b)  

which are inherited from (2.7) and (2.8), plus the additional label 

R + & = * l  (2.12) 

which denotes the in ( E  = -l)/out ( E  = +1) character of the limiting asymptotic states. 
For the SO(3, 1 )  representation, there exist an 1-raising operator X+(Z) and an 

1-lowering operator X - (  I ) ,  which are defined by [ 101: 

X + (  I )  = K- L, + K3 L, + ( I  + 1 )  K3 

X - ( l ) =  K+L-+ K3L3+lK3 
(2.13) 

with 

K,= K,*iK2 L , =  Ll*iL2. 

These raising/lowering operators exist for both realisations, equations (2.3) and 

For the standard realisation, equation (2.3), with the standard phasing and normali- 
(2.9), of the SO(3,l)  algebra. 

sation [12] of the ket vectors Ia‘lm), it can be shown that 

(2.14) 

It should be noted that this standard group theoretic matrix action used in (2.14) 
above, is not canonical, but requires arbitrary (but fixed) phase conventions [12]. 
Indeed the realisation of SO(3, 1 )  by equations (2.9) is easily seen not to be in the 
standard form. Only by an appropriate re-phasing of the scattering space kets, la’lm; E ) ,  

can the standard matrix action be restored. Physically this fact is obvious, since the 
required re-phasing is precisely the introduction of scattering phases for the asymptotic 
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states [ l l ] .  We conclude that the original kets la'lm) and the kets Ia'lm; E )  in the 
factor space of scattering states are related by the asymptotic equivalence relation: 

la ' Im)-A, , (k) la 'Im;  e=-l)+BI,(k) la ' Im;  E =+1).  ( 2 . 1 5 ~ )  

It can be shown by using O(3) m-raising/lowering operators on  both sides of equation 
( 2 . 1 5 ~ )  that A,,(k) and B f , ( k )  are independent of m. We drop the subscript m in 
the following discussion. 

Let us now operate on ( 2 . 1 5 ~ )  with the /-raising operator X + ( I ) .  On the left-hand 
side, the action is standard and we get the matrix element of (2.14). On the right-hand 
side the action is non-standard, using (2.9), which we evaluate directly to be: 

These results (using ( 2 . 1 5 ~ )  again with I +  I +  1) lead to the recursion relations: 

-( (21 + 1 ) [ ( I  21+3 + 1)2 + a"] )1'2iAf+l = (%) '" (1+ 1 - ia ' )A,  

21+ " 2 ( 1 +  1 +ia ' )B,  
(21 + 1)[(1+ 1)2+a '2]  -( 21+3 )1'2iB~+l = -(=) 

i.e. 

(2.16) 

The recursion relation for the reflection amplitudes, which is defined as R , ( k )  = 
B , ( k ) / A , ( k ) ,  is then 

The solution to this recursion relation is 

(2.17) 

(2.18) 

The S matrix elements are related to the reflection amplitudes by 

S,(  k )  = e""R/( k ) .  (2.19) 

Therefore, we have 

(2.20) 

where A ( k )  is independent of I and to be determined by the S-wave phase shift. 

3. The Dirac equation and its scattering matrix 

Before extending the algebraic approach to Dirac systems, we shall first introduce the 
notation to be used in the discussion. 
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In the Dirac problem, the wavefunction $ describing the scattering has four 
components $ A ,  which have the asymptotic form [7] (for non-Coulombic central 
potentials): 

$A - a A  eik'+r-'eikrfA(8, 4 )  ( A  = 1,2 ,3 ,4) .  ( 3 . 1 )  

The corresponding differential cross section is 

(3.2) 

In the Dirac problem the quantities a, are not all independent. For the plane wave 
we have 

Ia3I lad k - -  
la11 la21 E+" 

The same relation exists between 
Therefore, (3.2) is reduced to 

(3.3) 

the f A .  

In the scattering problem the 'small' lower components do not provide further 
information. 

For polarised beams, we have the following asymptotic forms: 

+l-e 'k '+r- '  eik'fi(e, 4 )  ( 3 . 5 2 )  

+ 2 -  r-' eik'gl(e, 4 )  (3.56) 

and (with spins antiparallel to the direction of incidence) 

( 3 . 6 ~ )  

(3.6b) 

where the scattering amplitudes h(  8, 4 ) ,  si( 8, 4 )  (i  = 1,2) are directly related to the 
elements of the S matrix. 

For the partial wave expansion in a central field, we consider the solution of the 
Dirac equation in the following form: 

where the angular part x': is a two-component wavefunction defined by 

x': =L(ll*. -7f71jl*.)y?-T(e, 4 ) x ; , 2 .  
I 

Here, x2 is the eigenfunction of X= - ( a -  L +  l ) ,  i.e. 

which has a sharp angular momentum 

j = I K I  - f  j 3  = CL 
where 

(3.10) 

J = L + f a .  (3.11) 
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The important relation we are going to use in this paper is 

(U. qxt: = -xf, (3.12) 

and the relation that the orbital angular momentum is 

/ ( K )  = / K I  +i[Sgn(K)- 1 1  (3.13) 

that is, corresponding to a fixed value of 1, K can take two values, 1 and - 1  - 1. (Note 
that K = 0 is excluded: that is, 1 = 0 corresponds uniquely to K = - 1.) 

The solution (3.7) is the eigenfunction of Dirac's operator K = - p 3 ( u  - L +  l ) ,  with 
eigenvalue K. If we define the phase shifts of (3.7) to be S , ,  that is 

(3.14) 

(where we now are considering the (repulsive) Coulomb field), the relation between 
the scattering amplitudes and the S matrix of the Dirac system can be written as 

F , ( r )  - A ,  s i n ( k r - $ d ( K ) - v  In(2kr)+Sk) 
r-w 

fi(8, 4 ) =  (2ik)-' {(l+l)[exp(2iS~)-l]+l[exp(2i~~,~,)-l]P~(cos 8 ) )  
/=0 

= f ( e )  ( 3 . 1 5 ~ )  

(3.15 b )  
X 

g,(& 4 )  = (2ikI-l c [-exp(2iS,)+exp(2is-,-,)]Pf(cos e )  e'* = g ( e )  e'* 

and it can be proved that 

/ = I  

(3.16) 

From (3.15) we can see that, similar to the non-relativistic scattering problem, an 
additional constant phase shift common to all S , = ,  and S , = - , - ,  will not contribute 
anything to the spin-flip and non-flip angular distributions at 6 # 0, since 

IC 

(21+ i ) s ( c o s  e) = ~ S ( C O S  e - 1). 
1=0 

This is one of the key points in the construction of algebraic models in a realistic 
scattering problem. 

4. Scattering for an SO(3, 1) symmetric Dirac Hamiltonian 

Before treating the Dirac-Coulomb problem, it is helpful to discuss first scattering 
from an approximate Dirac-Coulomb Hamiltonian which has SO(3, 1) symmetry [8]. 
The Hamiltonian, Hsym, for this relativistic SO(3, 1) symmetry is defined by subtracting 
the symmetry breaking term H,, (where fs stands for fine structure) 

H s y m  E H D i r a c -  H f s  (4.1) 
where 

(4.2) 

(4.3) 
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Consider the Dirac equation 

H s y m 9  = E 9. (4.4) 

In order to iterate equation (4.4) into a second-order differential equation we define 
the operator: 

Q+ E P 3 ( H s y m  - E )  

= i p2a  - p + m + p3( a /  r - H f s  - E ). (4.5) 

Then we iterate the equation 

Q+IL=O (4.4') 

by multiplying on the left with Q-, where 

Q- = i p 2 a  p - m + p 3 ( a / r  - H f s -  E )  (4.6) 

to obtain: 

Q+Q-IL = 0-Q+rL = O .  (4.4") 

It can be shown that equation (4.4") has SO(3, l )  symmetry by introducing the 

(4.7) 

(This means that the symmetry is seen in the moving frame introduced by SI .) The 
similarity transforms of Q* can be calculated to be: 

(4.8) 

similarity transformation S, , where 

SI = exp(fp,(a .  r*) sinh- ' (a /K)) .  

Q: = SI Q+S;' = i p z a  p i  m - ES:p ,  

and we have the relation: 

QLQ:C#I = Q:QLC#I = ( V 2 + ( E 2 -  m 2 )  -- 4 = 0 .  (4.9) 2 a E >  r 

Accordingly, the solution of (4.4') is 

CC, = Q-S;'C#I (4.10) 

if 4 is a solution of (4.9). 

equation: 
Equation (4.9) has the same form as the non-relativistic Coulomb-Schrodinger 

Zka, 
( P 2 + - - )  4 = k Z 4  

with 

a , = ( a / k ) ( k 2 + m 2 ) ' "  

and 

k 2  = E ' -  m 2 .  

Notice that 

(4.9') 

(4.11) 

a ,+am/k  as k+O.  
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We restrict ourselves to the subspace where Hsym is definite, i.e. E = l (k*+ m2)"21. 
The six SO(3, 1 )  generators are 

L = r x p  

K = l /k[ i (p x L - L X P )  + a E f ] .  
(4.12) 

The states of the scattering factor space are the direct products of the states defined 
in the space S 2  x Z2 and the spin states; in the asymptotic algebra we have the operators 
i, L, a and p available, along with the operator R -, E = * 1  in H 2 .  

The asymptotic forms of the SO(3, l )  generators in (4.12) are now found to be: 

L-,  L (4.13 a )  

K + K ' =  [ ~ ( F x  L -  L X  i ) R  +f( k ) i ]  (4.13 b )  

where 

( k 2 +  m2)I i2  
I kl 

j - ( k ) = a r = a  ( 4 . 1 3 ~ )  

that is, the relativistic form of the Sommerfeld parameter. Repeating the discussion 
in $ 2  for the solution of the second-order equation, we have the asymptotic equivalence 
relation: 

(4.14) 

(4.15) 

(4.16) 

From equations (4.13a, b ) ,  it follows group theoretically that, once again, AI , , )  and 
B,,,, satisfy the recursion relation (2.16) (with CY, in the place of a ' ) .  

The asymptotic equivalence relation for solutions to the first-order equation can 
be written as: 

I+)-  QT(ST1)14)- as r + o 0  (4.17) 

where 14)- denotes the R H S  of (4.14), 

Q? = i p 2 a  - FkR - m - Ep,  

and 

S; '=exp[-+p,(a*i)  s inh- ' (a /K)]  

(4.18) 

(4.19) 
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where 

-ik sgn(K) 

Notice that 

C, = - 1-  I ( k ) = C I +  I ( k ) . 
The phase shifts 6,=/ and S,=-l- l  can be written as 

(4.21) 

(4.22) 

r(l+ 1 +ia,) 
r ( l + l - i a r )  exp(2i&=,) = exp(il(K).rr) exp(2iA,) constant( k )  

(4.23) 

and 

4,) 
AIk) 

e~p(2 i8 , , -~ -~ )  = exp(il(K).rr) - exp(2iA,) 

r( 1 + 1 + ia,) 
r ( l + l - i a r )  

exp( -2iA,) constant( k )  - - 

where 

( k ( K ~ + ~ ” ~ ’ * - I K I  
A,=tan-l - 

E + m  a 

(4.23’) 

(4.24) 

It is interesting to notice that-for an attractive potential (that is, ar+ -a,)-the 
poles of the scattering matrix (4.23) provide us with the bound state spectrum. Since 

l (~ )+ l - i a ,=nega t ive  integer= - ( N - l ( ~ ) - l )  (4.25) 

we find that the principal quantum number N is: 

iaE 
2 1,2 = N. ( E 2 - m  ) 

We have thus for the bound state energy E the result: 

m 
[ l + ( ( ~ / N ) ~ l ’ / ~  

N = l , 2 , 3  ,... . (4.26) E =  

(Note that these eigenenergies, and the wavefunctions in general, differ from the 
Dirac-Coulomb results in order ( a Z ) 2 / l ~ I . )  

5. Dirac-Coulomb scattering 

The Dirac electron in a pure Coulomb field a Z / r  (the Dirac-Coulomb problem) has 
the SO(3, l )  symmetry (of the symmetric Hamiltonian) broken by the fine-structure 
splitting, H,,, to the symmetry SO(3) XZ,. The Z2 symmetry here is generated by the 
Coulomb helicity operator [8]. Remarkably the operator form of this Z, symmetry 
provides a complete definition of the Dirac-Coulomb radial function (in the ‘most 
non-relativistic frame’, cf [SI). The regular functions, satisfying the boundary condition 
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at r = 0, can then be expanded asymptotically about the singular point at infinity, 
determining the relativistic Coulomb phase shifts. This latter step uses analysis for 
the confluent hypergeometric function and is neither group theoretic nor algebraic in 
nature. 

To what extent can this procedure be made group theoretic? 
To determine the answer let us consider again the symmetric Hamiltonian. In the 

quadratic Hamiltonian, (4.9), the Coulomb helicity operator is given by U - K,  which 
(using (4.12)) becomes 

(5.1) 

(5.2) 

(5.3) 
where K is Dirac's operator. 

By construction, U * K commutes with the quadratic Hamiltonian, (4.9), and it is 
easily shown (from (5.3)) that K and U -  K anticommute. Since ( u . K ) *  obeys the 
relation (a - K ) ' +  K' + af on eigenkets, it follows that a K obeys the equation: 

(5.4) 
where IE, K ,  p, p i )  denotes the eigenkets of (4.9) having sharp energy E, K + K ,  Jz  -* p, 
and p , - , p i = * l .  

U * K = ( 2 k ) - l ( a  * p  x L -  U *  L XP)+  a , ~  

i ( u  - p x L -  U -  L x p )  = 2 u . p ( u .  L +  1) 

U -  K = i k - ' p ,u .pK +a,u-  i 

E 

Using the identity: 

we find that the Coulomb helicity operator takes the form: 

U '  KIE, K ,  p, p i ) =  - (K2+a?) '" IE,  - K ,  p, p i )  

Recall now that j ( K )  = I K I  -&, that 

and moreover that the radial eigenfunctions of (4.9) are functions of I ( K ) .  It follows 
that equation (5.4) acts as a raising/lowering operator in I for the eigenkets of the 
quadratic Hamiltonian (4.9). 

Now let us consider the factor space of scattering states, S 2 x E 2 ,  for this system 
in the energy sub-space E. We denote these eigenkets by: IE, K ,  p, p i ;  where 
E, K ,  p, p i  are as above and E denotes the eigenvalue of R + E = *l. 

Using (4.130, b ) ,  the operator U -  K takes on a very simple form: 

( 5 . 5 )  
(Note that the two terms in (5.5) anticommute.) It follows-just as for (5.4)-that 
(a * K)sCall acting on the scattering factor space eigenkets obeys the equation: 

(5.6) 
(The overall minus in (5.61, just as the minus in (5.4), stems from a phase definition 
in the action of U ? on eigenkets of Dirac's operator K . )  

We can now determine explicitly the phase shifts for the quadratic Hamiltonian 
using the asymptotic equivalence relation: 

U a K j U . K"'"" - - i p , u .  ;RK + a , a *  ?. 

( U  - K)scattiE, K ,  p, p i ;  = -(ipiKE + a,)IE, - K ,  p, p i ;  

IE, K ,  p, d ) - A - , ( E ,  I ( K ) ,  pi)IE, K ,  p, pi; E = -l)scalr 

+ A + , ( E ,  I ( K ) ,  pj)(E, K,  p, pj; E = +1)"'"". (5.7) 
(The constants A,, are independent of p, as can be shown using raising/lowering 
operators.) 
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Taking, for definiteness, K = - 1  and p i  = + 1  and operating with U - K(u * Kscatt) 
on the two sides of (5 .7) ,  we obtain the general two-term recursion relation: 

( I 2  + a f ) ’”A,  ( I )  = [i( - / )E  + ar ]AF(  I - 1 )  for p i  = + 1  (5.8) 

with the solution: 

/( r(I+ 1 iisa,))’” 
A , ( l )  = ( - iE )  x (a constant independent of 1 ) .  r( I + 1 - isa,) (5.9) 

We find the scattering phase shift: 

x (a constant independent of I ) .  (5.10) 
r(I+ 1 + ia,) 
T ( I +  1 - ia,) 

A+’ 
A-,  
-- 

It follows that the scattering matrix has the explicit form: 

S,  = exp(2iaK)A( k) ( 5 . 1 1 )  

where A( k) is the constant independent of 1, and 6, = arg(r(  I ( K )  + 1 + ia,)). 
This procedure provides an alternative, purely group theoretic, derivation of the 

SO(3 , l )  scattering for the second-order Hamiltonian (4.9), with the same results as 
obtained earlier in 0 4. The advantage of the present method is that it generalises to 
the Dirac-Coulomb problem. 

To carry out this generalisation we must now develop the analogue to I (  K )  for the 
second-order Dirac-Coulomb Hamiltonian. Let us define the first-order equation, 
analogous to (4.4’), by: 

0:$ = 0 (5.12) 

where 

0: E ~3(HDirac - E - ~ 3 m )  * m (5.13) 

and 

[a, 0’1 = 0. 

Then the second-order equation has the form: 

QLQLq = QkQ!+$ = 0. 

Expressed in spherical coordinates this equation, (5.15), is explicitly: 

(5.14) 

(5 .15)  

(5.16) 

where the operator r is given by: 

r = p , K - i a p , u .  ?. (5.17) 

To put (5.16) in a more understandable form let us diagonalise r using the trans- 
formation: 

(5.18) S = exp[fp2u - i tanh-’( a/ K ) ]  

to obtain: 

r~P=srs -1=p ,KI(1 - (a /~ )2 )L’2 i .  (5.19) 



4648 J Wu et a1 

Thus i: has the eigenvalues: 

F+ y=I!ZI(K2-(y2)1’2/. 

The transformation S applied to (5.16) yields the result: 

(5.20) 

(5.21) 

which is readily interpretable: the radial Dirac-Coulomb eigenfunctions in the frame 
S have exactly the non-relativistic Coulomb functional form but with relativistic 
parameters: k2 = E ’ -  m2, a,  = a E /  k and, most interestingly, irrational angular 
momenta: f (  y) = IyI +f(sgn(y) - 1). (Note that sgn(y) = sgn(K).) We may interpret 
I (  y )  as the effective orbital angular momentum, defined by L f  = T(T+ 1) when brought 
to diagonal form. 

In the frame S it is not difficult to give an explicit operator expression for the 
Coulomb helicity operator: 

(5.22) 

This expression for the Coulomb helicity operator anticommutes with K and commutes 
with the second-order (iterated) Dirac-Coulomb Hamiltonian. It is easily shown that 
the square of the operator in (5.22) is: 

1+i: 
( a  K)Dirac-Coulomb = k - l a  i (  it. p +T) i: + a r c  * i E ( a  * K 1 D - c .  

[ ( a  * K)D-C]’ = y 2 +  a f  (5.23) 

and that (in analogy to (5.4)) it obeys the equation: 

( a S K ) D - C / E ,  K ,  p, Pi)=-(Y2+af)l’21E, - K ,  /-b p i )  (5.24) 

where / E ,  K ,  p, p i )  denotes the eigenkets of (5.15). 
These results show that the operator ( a  - K)D-c is (when normalised) the generator 

of the symmetry group Z2 for the second-order Dirac-Coulomb Hamiltonian. 
We can now determine the phase shifts for this (second-order) Hamiltonian, since 

(exactly as for the previous case of the symmetric Hamiltonian) equation (5.24) shows 
that ( a  * K)D_c is a raising/lowering operator for the radial eigenfunctions, which now 
changes I( y )  to I( y )  * 1. 

Similarly, when we go to the factor space of scattering states, S 2  x Z2,  (in the energy 
sub-space E )  we have the eigenkets IE, K ,  p, p i ;  E ) ” ~ ~ ‘  where E denotes the eigenvalue 
of R + E = *l. In this space, the operator ( a  * K)”,’: takes on a simple form: 

( a  K ) ~ - ~  + ( a  K)E:: = io - ~ R F  + a r a  t. (5.25) 

We use now the asymptotic equivalence relation: 

IE, K ,  p, Pi)--A-,(E, U Y ) ,  P;)lE, K ,  p, P i ;  E = 

+A+,(E, VY), PS)IE, K ,  CL, p ; ;  E = +l)scat‘ (5.26) 

(where, as before, the A, are independent of 1). 
Taking, for definiteness, as before K = - I  and pi  = +1, and operating on both sides 

of (5.26)-with ( a -  K)D-c (on the LHS) and ( a .  K)”,’: (on the RHs)-we obtain the 
general two-term recursion relation: 

( r2+a f )”2A, ( l (y )= ly l )  =[ i&(- l~l)+cu, lA,(f(y)= lyl-1). (5.27) 
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This recursion relation is exactly of the same form as the recursion relation (5.8) except 
that l (y)  = y replaces 1. I f  we were allowed to replace 1 by l (  y )  = y in the solution 
(5.9), then we would get (for pi  = +1) the scattering phase shift: 

-- A+ 1 - ( - l ) y ( r ( y + l + i a r ) )  x (a  constant independent of y) .  
A- ,  r ( y + l - i a , )  

(5.28) 

It would then follow that the scattering matrix (for the second-order Dirac-Coulomb 
Hamiltonian) is given by: 

S, = (-l)'-' exp(2ibY)A(k) (5.29) 

where 

y=I(K2-CY2)"2/ 1 = l( K )  = integer 

with A(k) a constant independent of all parameters except energy. 
The scattering matrix given by (5.29) is correct, and agrees with the scattering 

matrix obtained using analysis on the regular solutions to (5.21), that is to say, the 
standard analysis of the confluent hypergeometric functions. 

It is not clear that one can justify the solution (5.28), at least not in any strictly 
group theoretic way, without appeal to analysis. The use of the recursion relation, 
(5.27), does however fully justify the ratio of gamma functions; the problem only 
concerns the phase (-1)'. Since the recursion relation proceeds by integer steps, only 
( -l)integer can occur, with the solution (5.28) having an undetermined constant given 
by the initial value y - N (with N =the number of steps). 

For the symmetric Hamiltonian I ( K )  is an integer, so that 1 = 0 is the standard 
initial value. For the Dirac-Coulomb case, each value of y (since irrational) is a 
special case ( l (y )= ly l  or Iyl-1) and, in fact, the relative phase shift between the 
different IyI is not determined (group theoretically). That is to say, there exists no 
common initial starting point for the recursion, valid for all the /yI. 

We conclude that, in the strict sense, a purely group theoretic determination of 
scattering phases of the (second-order) Dirac-Coulomb Hamiltonian is not possible. 
(This is probably not as surprising as it may appear, since already in [ l ]  an explicitly 
energy-dependent phase (not obtainable by group theory) occurred in the complete 
answer.) 

If we broaden the allowed methods to go beyond group theory (Lie-algebraic 
methods) and include general algebraic techniques (but not the methods of analysis) 
then we can justify the solution (5.28) as the algebraic replacement of I (K) by I ( ? )  
everywhere. (The phase (-1)' in (5.29) can be understood as having a different origin: 
the Jacobi-Anger identity.) 

By contrast, the scattering matrix for the Dirac-Coulomb problem itself (that is, 
the first-order equation) follows precisely from the same method as used in 8 4 for the 
(first-order) symmetric Hamiltonian. 

8, = arg(r(  y + 1 + i a r ) )  

The solutions of the first-order equation are given by: 

IE, K, P )  = Q'S-W, K ,  p, P i )  (5.30) 

where IE, K ,  p, p i )  is a solution of (5.15). The asymptotic solutions have the form: 

IE, K ,  P ) -  Q:S-'IE, K ,  p, Pi)" (5.31) 

where IE, K ,  p, pi)" denotes the R H S  of (5.26). 
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(Note that the asymptotic limit of 0’ is the same as the asymptotic limit of 0-, 

The operator S - ’  is explicitly: 
namely Q? as given in (4 .18) . )  

s-’ = ([l -(LY/K)2]-l’2+1)1’2 
2 

(5.32) 

Notice that the form of Q? is independent of the potential so long as V ( r ) + O ,  as 
r + 03. Moreover, S-’  is only determined by the diagonalisation of the effective orbital 
angular momentum. (These remarks could be useful in the construction of scattering 
models for the Dirac scattering and we will return to this in the conclusions.) 

It remains to detail the actual solution in the original representation where we have 
the Dirac-Coulomb equation in the form given by (4.2). Writing (5.31) more explicitly 
we have 

where 

Notice that 

U ,  = - 1 -  1 ( k )  = U:=i+l( k ) .  

The phase shifts r lKeI  and T ~ = - ~ - ~  are given by 

(for I 2  1) 

e x p ( 2 i ~ , , ~ )  = S,  exp(2i4,) 

and (for I2 0) 

e ~ p ( 2 i ~ , = - ~ - , )  =exp[liv{I+I - [ ( I + I ) ~ - L Y ~ ] ” ~ } ]  

where 

k I K ~ - ( K ~ - L Y ~ ) ’ ”  
c$K =tan- ’  - 

( E + m  LY 

(5.33) 

(5 .34)  

(5.35) 

(5 .36)  

(5.37) 

(5.38) 

It can be shown that exp(2i4,) with 4K given by (5 .38)  is identical to the standard 
expression given in  [7], i.e. 

(5.38‘) 
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A closed form for the spin non-flip and flip elements (3.15) of the S matrix cannot be 
obtained. From these results, it is clear that the non-relativistic limit corresponds to 
( I 2  - a‘)’”+ I and a, + (Y‘, and that the symmetric Coulomb problem corresponds to 
I - + ( I ~ + L U ’ ) ’ ~ ~  only. 

From the poles of the S matrix, (5.36) and (5.37), we can, for an attractiue potential 
(that is, a ,  + -ar ) ,  also derive the energy spectrum of the Dirac-Coulomb bound states. 
Since 

I (  y)  + 1 - ia, = negative integer = -( N - I ( K )  - 1) 

i.e. 

i(Y,=N+lyl-)K) 

we have 

f f 2 E 2  fff=-- - - ( N  + IYI - / K I ) 2  
E 2 -  m2  

or 

(5.39) 

(5.40) 

(5.41) 

6. Conclusions 

The symmetric (relativistic) Coulomb problem shows us that the Lie-algebraic pro- 
cedures for the non-relativistic Schrodinger problem can indeed be extended in all 
details to the relativistic domain. Once we iterate the Dirac equation to get a second- 
order differential equation we can use similar techniques but we must also use more 
general algebraic methods. Since the algebraic procedure developed in the non- 
relativistic problem can be divorced from the specific differential realisation, so also 
can this procedure for the relativistic problem. The additional point is that we have 
to construct an operator to restore the solutions to the first-order equation. This could 
be done since Q? was independent of the specific potential form. All we have to do 
is to construct the effective angular momentum operator (the analogue to T ( T + l ) )  
and diagonalise it to find the diagonalising transformation S. 

In a proton-nucleus collision, it is possible to set up a relativistic algebraic model 
by constructing an effective orbital angular momentum operator L:, , as suggested by 
the Dirac-Coulomb problem, to describe the modified Coulomb scattering. Here the 
modified Coulomb problem means that the short-range behaviour is modified and the 
long-range interaction is still of the nature of Coulomb scattering. We hope to report 
our progress along this line in the near future. 
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